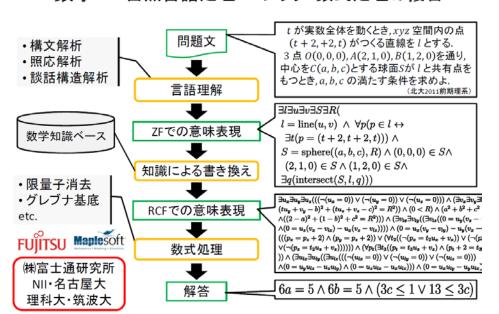
AIが大学入試を突破する時代の 社会変化と地方創生

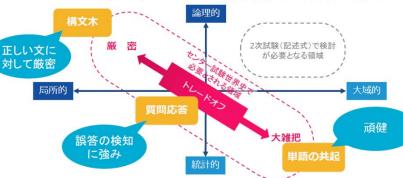
国立情報学研究所 教育のための科学研究所 新井 紀子


ロボットは東大に入れるかプロジェクト

概

現在および近未来のAI技術・ロボット技術が導入されることで、2030年の社会がどのよう に変化するかを科学的に明確化することを目的に、大学入試をベンチマークとして、我が 国における学際的な知識・先端技術を集積し、これまで蓄積された人工知能の各要素技 術の精度を高め、2016年にセンター入試で高得点、2021年に東大入試突破を目指す。

世界史の正誤判定問題で80%以上の精度を発揮。 MARCH・関関同立クラスを含む日本の大学の70%に、 合格可能性80%以上を達成。東大記述模試では数学・ 果 世界史で偏差値76.2, 51.8を達成した。


数学 一 自然言語処理・ロジック・数式処理の接合

センター試験世界史Bの解法

Foresight in sight

3つの手法の組み合わせで苦手な問題を解消し、高得点を狙う

2015年ベネッセ模試において78点、偏差値66を達成

人間環境において紙に記述するロボットアームを開発

AIはどのように問題を解くか

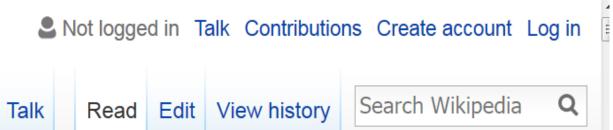
MOZART'S LAST SYMPHONY SHARES ITS NAME WITH THIS PLANET

MOZART LAST SYMPHONY

Article

Main page

Contents


Featured content

Current events

Random article

Donate to Wikipedia

Wikipedia store

Symphony No. 41 (Mozart)

From Wikipedia, the free encyclopedia

Wolfgang Amadeus Mozart completed his **Symphony No. 41** in **C major**, K. 551, on 10 August 1788.^[1] It was the longest and last symphony that he composed.

The work is nicknamed the *Jupiter* Symphony. This name stems not from Mozart but rather was likely coined by the impresario Johann Peter Salomon^[2] in an early arrangement for piano.

Interaction

定型的環境

半定型的環境

半定型的環境の中で、ロボット・AI が得意なことを発見し、ロボット・AI が働きやすい環境を整えたときに、 生産性が飛躍的に向上する。 金融・エネルギー・輸送・倉庫管理等

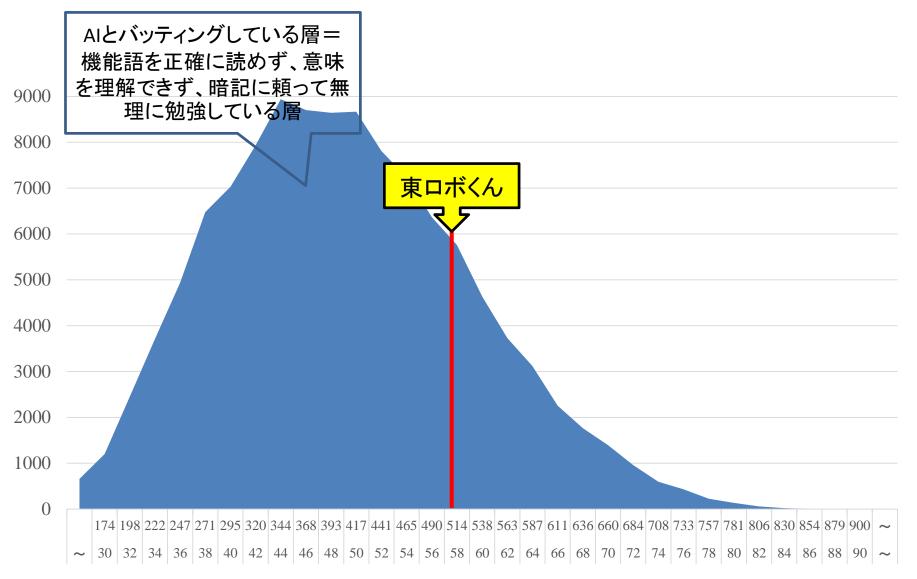
ポイント:

- ✓ データ構造からロジスティクス・メンテナンス・人間からの情報 吸い上げ・社会整備に至る綿密なビジネスデザイン
- ✓ 一箇所でもAI完全問題※が混入すると、すべてが台無しに
- ✓ 重要なのは要素技術以上に、要素技術の連結可能性
- ✓ 諦めも肝心:遠隔操作とAIサジェストと完全自動化の切り分け
- 構造理解にある

- ✓ 労働代替も、稼ぎどころ(システム輸出)も、**半定型的環境の**

※AI完全問題:人間と同程度に知的 なコンピュータ(人工知能)を作るうえ で障害となる技術的な問題

シンギュラリティは、来ない。


非構造的環境ではAI・ロボットは二歳児以下 介護・除雪・廃炉・災害救助等の非定型な苛酷 な仕事の多くは、人間の仕事として残り続ける。

非定型的環境

大学に入学する18歳 vs. AI

このままでは、人間に残される仕事が、高度知的労働と「非定型環境下」の 苛酷な低賃金労働に二極化する可能性が極めて高い。

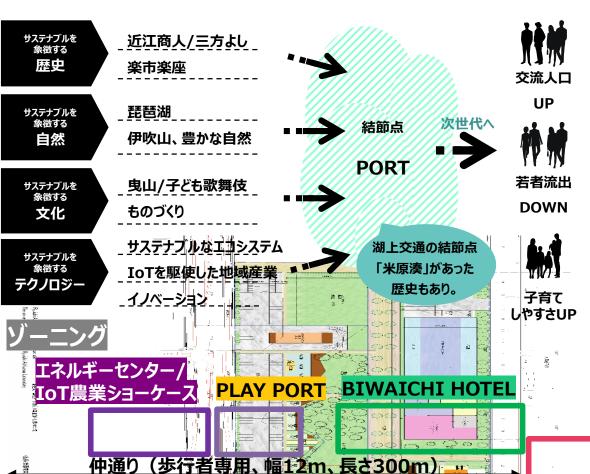
2030年への課題

- 人材の量の「消失」と質の「溶解」
 - AIを使いこなす人材=高度読解力を有する柔軟な人材を、特に地方で輩出できなくなっている。
 - 東大の首都圏私立出身者比率が80年代から上昇
 - 地方有名公立高校の地滑り的な進学実績の低迷
 - 人手不足と失業・非正規雇用が同時に進行し、格差が拡大し、 人口減少に拍車がかかる。
- AIと差別化できる人材の育成と、AIを活用しながら人が活躍できる「生産性の高い」仕事の創出が必要。
- 根強い地銀の担保主義
 - 「地域の持続性が自身の持続性そのものである」との当事者 意識が必要。
 - 新しいビジネスの創出と、その持続にコミットする以外に地銀の生き残る道はない。
 - 既存のアセット(地元企業、地の利、観光資源等)に「少しの知恵」で、劇的に付加価値を付けることができる地域が、自治体の無策と地銀の担保主義によって放置されている。
 - 日々50万人が新幹線で「素通り」している米原はその代表格。

プロフットサル

クラブ拠点

保育園


ブランド/ネーミング(案)

滋賀流WELL-BEINGを日常の暮らしに。

PORTTI*

※フィンランド語で「PORT!

SUSTAINABLE PORT これまでとこれからをつなぐ滋賀の湊町

PORT MARCHE

地産地消を楽しみ、新しい商いが 生まれる三方よしのマルシェ

BIWAICHI HOTEL

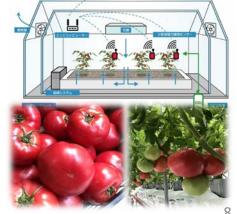
琵琶湖の恵みを感じ、ビワイチ※※ の楽しみを深めるホテル

※※琵琶湖周回のサイクルツーリズム

PLAY PORT MPR

「遊ぶ、演じる、スポーツ」を プレイする

エネルギーセンター/


IoT農業ショーケー エネルギーの地産地消

IoT農業(スマートグリーンハウス)

米原駅

PORT MARCHE

出所:一般社団法人米原駅東口まちづくり協議会「基本計画書」「青澤電子建築設計事務所、滋賀県立大学芦澤竜一研究室、加藤比呂史資料。ヤンマーHPを基に作成

2030年への提言

- 人材不足について
 - AIやロボットの能力を明確に見極め、それらに「できること」は任せて、「できないこと」を人間が担う生産性の高いビジネスへの転換(Society5.0)
 - 総花的・SF的なAI・ロボット投資をやめ、投資領域を明確にする。
 - AIやロボットと差別化できる能力を保障する公教育
 - 無条件で0歳から保育園と、小学6年生までの学童保育(女性の正規 雇用と生産性を増やす)
- 持続可能な地方創生について
 - コンサルによる「金太郎飴」的地方創生と、NPO的町おこしは持続可能ではない。
 - 地域にあるアセットを改めて見直し、地銀が当事者意識を持ち、資金 調達だけでなく、長期的に人的支援・アイデア支援を行う(←AIにはで きない金融の仕事)
- 撤退すべき部分は、体力があるうちに撤退
 - マクロ指標・インフラの老朽化等から、日本津々浦々までインフラや町村を維持できるわけではない。
 - コンパクトシティへの移住インセンティブ設計・移住支援